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ABSTRACT

Recently, curvature filter (CF) has been developed to implicitly minimize curvature for image processing problems
such as smoothing and denoising. In this paper, we propose a parallel curvature filter (PCF) that performs on
GPU which is much faster than the original CF on CPU. Inspired by Convolution Neural Networks processed
by GPU, the convolution operations in curvature filter computation can be similarly paralleled by GPU so that
the PCF on a single GPU can process 33.2 Giga pixels per second. Such performance allows it to work in
the real-time applications such as video processing and biomedical image processing, where high performance is
required. Our experiments confirm the efficiency and effectiveness of the PCF.
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1. INTRODUCTION

Image processing plays a fundamental role in various research fields, such as biomedical process modeling,
material science, observing physical experiments, astrophysics, etc. Generally, filters with low computational
cost are preferred. In some special tasks or scenarios, high performance of image processing is usually required
to achieve real time processing, and as the resolution increases, to reduce the computational time is becoming
difficult. Thanks to the modern hardware, such as GPU, many image processing tasks can be parallel and reach
high performance.

Recently, curvature filter is developed to minimize curvature regularization in image processing models.'>? It
is a discrete filtering approach enables efficient computing of reduced-energy images by successively minimizing
an energy function:

EWU) = Eo(U,I)+ AEL(U). (1)

where the data-fitting energy Fo(U,I) > 0 measures the fitness of resultant image U to the original image
I, and the regularization energy F;(U) > 0 formalizes prior knowledge about U. Filters for Gaussian curvature
(GC),>* mean curvature (MC),>% and total-variation (TV)7 regularizers are implemented with a local approxi-
mation operators. By iteratively applying these operators to the original image, the regularization energy will be
reduced to get a piecewise developable (GC), minimal (MC), or piecewise-constant (TV) surface. Among them,
Gaussian curvature is an intrinsic property of the signal regardless of its representation and embedding.

However, many of the images that need to be enhanced are in high resolutions, or need to be processed in
real or near real-time. Although curvature filter is very fast, it takes minutes to process a big size image, e.g.
with size 2048 x 2048. This fact motivates us to perform it on GPU.

In this work, we present a image processing technique called parallel curvature filter (PCF) implemented on
GPU which can be applied to scenarios such as high definition and real-time image smoothing. The performance
of PCF is further evaluated with several different parameter settings.
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2. PRINCIPLE

2.1 Geometric Formular

Assuming ¥ = (z,y) € 2 denotes the spatial coordinate, where €2 is the input 2D image domain. Let I(¢,7) : & —
R™ denote the given discrete digital image with coordinates 7 and j. Let U(Z) denote the desired output image
to be estimated. We interpret the signal as a geometric surface over the space of the data, i.e., (&) = (Z, U(Z)).
According to this definition, curvature can be computed by taking partial derivatives over x and y. For Gaussian
curvature, we have:

2

K= ozsope

where U, and U,, denote the first and second partial derivative with respect to . We can minimize the total
absolute GC by this regularizer:*

ESC (1) = /Q K(U)|dz, (3)

Similarly, the regularization energy for mean curvature (MC) is

BYC) = [ 1)) ds. (®)
Q
with the MC H computed from U as

(1+ U Ui = 20Uy Uy + (14 U2)Uy,

HO)= 2(1+ U2 + U3/ - ®)

The regularizers mentioned here all minimize the surface energy in a local 3 x 3 pixel neighborhood around
each pixel, as shown in the next subsection.

2.2 Iterative Curvature Filter

Traditionally, solving curvature regularization terms listed aboves is difficult due to the complexity of the com-
putation of surface curvature with conventional gradient decent method. The curvature filter proposed recently
solved this problem! in an iterative way, as shown in Figure 1.

A surface can be locally apporximated by its tangent plane. Therefore, we can project U*(F) to U™ (&) such
that U*(%) is on the closest tangent plane of any neighboring pixel. In a 3 x 3 pixel neighborhood, 8 different
projective distances can be enumerated, i.e., {d;, i = 1,...,8}*(Figure 1).

Each d; is the projection distance to the corresponding geometric priors. The minimal one indicates that the
current pixel has the highest probability to the desired geometric configuration as well as the closest fitting to
the original image. Therefore it is selected to update each pixel in each iteration, as shown in equation 6 and 7.

UHL(F) = UYE) + do, (6)

|dpm| = min{|d;], i =1,...,8} (7)
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Figure 1. Illustration of the parallel curvature filter flow. Firstly, 8 projective distances are enumerated in a 3 x 3 neighborhood.
Secondly, the 8 shifting distances of each pixel in an image surface is computed by convolution. Finally, the minimal one is selected
to update each voxel in each iteration.

2.3 Parallel Curvature Filter

The curvature filter runs several convolution kernels on the same image to choose the possible geometric config-
uration for each pixel, as shown in equation 8.

M—
f(e.9) @ h(z,y) Z F(m,m)h(z —m.y —n) (®)

forx =0,1,2...M —1 and y = 0,1,2... N — 1. These convolution operations can be paralleled on GPU.
The most computationally-expensive part in our algorithm is the 8 convolutions. It can be accelerated by the
share memory on GPU. This yields our PCF as following.

A short introduction to the GPU architecture is presented. Interested readers may refer to books about
GPU programming and the CUDA programming guide for further details.” 19 A compiler generates executable
code for CUDA device. The CPU regards a CUDA device as a multi-core co-processor. CUDA threads access
data from multiple memory spaces during their execution. There are three levels of memory structure shown
in Figure 2. The first level consists of private local memory and register which are owned by each thread. The
second level is the shared memory which can be accessed by all threads of the block. The third level is the global
memory, the constant memory and the texture memory which all threads can get access to.

3. RESULTS AND DISCUSSION

We implemented the CUDA code for our parallel curvature filter with the GPU block size ranging from 16 to
32. For specificity, the hardware used is given below:

CPU: Intel(R) Xeon(R) CPU E5-1620v4@3.50GHz



The host issues a succession of kemel invocations to the device. Each kernel is executed as a batch
of threads organized as a grid of thread blocks

Figure 2. CUDA Memory Structure!
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Figure 3. Comparison of computation time between CPU and GPU.

GPU: Nvidia GeForce GTX 1080 Ti, with 3584 CUDA cores and 11264 MBytes global memory size, 49152
bytes shared memory per block.

Compared with the original curvature filter proceeded solely on CPU, PCF is much faster, which is compatible
for real-time applications. To evaluate the PCF, we did a simple comparison between them. Figure 3 shows the
result of the same image processed by both CPU and GPU.

The results of GC PCF and MC PCF are shown in Figure 4 and Figure 5 respectively. In order to see the
surface is regularized by iteration, we plotted the image surface intensity distribution along a line. Obviously
the MC PCF is more efficient than the GC PCF.



Figure 4. Gaussian Curvature PCF on a photo. From left to right are: origin photo
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