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Abstract

This paper presents a simple yet effective method for feature-preserving surface smoothing. Through analyzing the differential property
of surfaces, we show that the conventional discrete Laplacian operator with uniform weights is not applicable to feature points at which
the surface is non-differentiable and the second order derivatives do not exist. To overcome this difficulty, we propose a Half-kernel
Laplacian Operator (HLO) as an alternative to the conventional Laplacian. Given a vertex v, HLO first finds all pairs of its neighboring
vertices and divides each pair into two subsets (called half windows); then computes the uniform Laplacians of all such subsets and
subsequently projects the computed Laplacians to the full-window uniform Laplacian to alleviate flipping and degeneration. The half
window with least regularization energy is then chosen for v. We develop an iterative approach to apply HLO for surface denoising.
Our method is conceptually simple and easy to use because it has a single parameter, i.e., the number of iterations for updating vertices.
We show that our method can preserve features better than the popular uniform Laplacian-based denoising and it significantly alleviates
the shrinkage artifact. Extensive experimental results demonstrate that HLO is better than or comparable to state-of-the-art techniques
both qualitatively and quantitatively and that it is particularly good at handling meshes with high noise. We will make our source code

publicly available.
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1. Introduction

Surface meshes acquired through scanning or sensing equip-
ment are inevitably contaminated with noise. The user has to pro-
cess them with smoothing techniques before applying to down
stream applications, such as shape analysis, animation and ren-
dering. The main technical challenge of surface smoothing is
preserving features while removing noise and alleviating shrink-
age. The design of robust surface smoothing methods is therefore
of particular need in nowadays.

The discrete Laplacian operator on surface meshes has proven
highly useful in various tasks of digital geometry processing, for
example, mesh fairing, parameterization, reconstruction, editing
and compressing [1, 2, 3, 4, 5, 6], just name a few. The differ-
ential surface representation encodes information about the local
shape of a surface such as the curvature and the orientation. De-
spite that the uniform Laplacian operator can effectively smooth
surfaces, it fails to preserve features and leads to shrinkage.

Among the feature-preserving methods, the majority of them
typically use the normal information of surfaces, such as face or
vertex normals. In contrast, very few works are based on vertex
position [7, 8]. Some recent works extended these two types by
adding more delicate steps [9, 10, 11, 12, 13, 8, 14, 15]. However,
these methods generally consist of multiple steps and numerous
parameters, which are difficult to use/tune especially for complex
models. Moreover, the users especially those out of the field may
find it difficult and tedious to tune the involved parameters.

To overcome the above issues, we propose a novel, robust ap-
proach for feature-preserving mesh smoothing in this paper. Our
key idea is to construct a “half-kernel” uniform Laplacian oper-
ator (HLO) that can approximate the Laplacians at feature and
non-feature points using half windows. Specifically, we first an-
alyze the differential property of feature points and found it con-
flicts with the existence assumption of the uniform Laplacian.
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We then naturally propose a half-window algorithm to generate
different pairs of subsets (half windows) for each vertex by pair-
ing one immediate neighbor to the other unique neighbor. We
compute the Laplacians of all subsets which are further projected
to the full-window Laplacians to alleviate flipping and degenera-
tion. The final half-kernel Laplacian is automatically determined
as the one that incurs the smallest regularization energy. The
surface is finally updated with the determined half-kernel Lapla-
cians in an iterative way.

Taking a noisy surface mesh as input, our approach can auto-
matically output a quality version with preserving features and
resisting shrinkage. The main contributions of this work are:

o mathematical analysis of the differential property at feature
points;

o a half-window algorithm to generate multiple half windows
(subsets) for each vertex;

e a half-kernel uniform Laplacian operator (HLO) for feature-
preserving and shrinkage-resisting surface smoothing.

Our method' is conceptually simple and easy to use since it in-
volves only a single parameter (i.e., the number of vertex update
iterations). We demonstrate that the proposed HLO substantially
outperforms the uniform Laplacian in preserving features and re-
sisting shrinkage. We evaluate our method on both synthetic and
real-world models, and observe that our method can produce re-
sults with comparable or higher quality than the state-of-the-art
methods.

'Our executable program (EXE) has been released on the website
https://github.com/WillPanSUTD/hlo.
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2. Related Work

There exists a large body of literature of mesh denoising. Due
to space limit, we review only the mostly related works to ours
and refer the readers to the comprehensive surveys [16, 17].

The classical Laplacian smoothing methods [18, 19] are sim-
ple and fast. However, its isotropic property leads to feature-
wiping and shrinking artifacts. Taubin [20] proposed a non-
shrinking, two-step smoothing method with positive and neg-
ative damping factors. Desbrun et al. [21] proposed a fairing
method based on diffusion and curvature flow to process irreg-
ular meshes. Later, various isotropic smoothing methods have
been introduced based on volume preservation, pass frequency
controlling, differential properties, etc,. [22, 23, 24, 25, 26].

The above isotropic methods are effective to remove noise,
however they also wipe out features. Various anisotropic meth-
ods have been proposed to preserve features. Representative
methods are diffusion/differential-based methods [27, 28, 29, 30,
31, 32, 33, 34, 7], bilateral filters [35, 36, 37, 38, 39], methods
combining normal filtering and vertex update [37, 38, 40, 41, 42,
43, 44, 45, 46, 35, 47, 48, 43, 49, 14, 15]. Bilateral filtering
is initially used in image denoising [50], and it is successfully
extended to mesh denoising. Regarding the feature-preserving
techniques, the utilization of filtered normals has seen notice-
able progress in recent years [37, 38, 40, 41, 42, 43, 44, 45, 46,
35, 47, 48, 43, 49, 14, 15, 51, 52]. Some recent methods have
focused on vertex and face classification before mesh denois-
ing [9, 10, 11, 12, 13, 53, 54]. Nevertheless, the classification
results depends largely on the level of noise. Lu et al. [8, 14, 15]
presented the ideas of pre-filtering before real smoothing and can
robustly handle heavy noise with frequent flipped triangle faces.
Arvanitis et al. [55] introduced a novel coarse-to-fine graph spec-
tral processing approach for mesh denoising.

Another line of anisotropic methods focused on the sparse per-
spective. Compared with non-feature vertices, feature vertices
in a mesh are usually sparse, which can be reconstructed or de-
tected by solving a sparse problem [56]. Sparsity was introduced
into mesh smoothing in some recent works [7, 57, 8, 58]. For in-
stance, He et al. [7] developed a Ly minimization framework with
an area-based edge operator which is generally sparse in a surface
mesh. It is, however, non-convex and difficult to solve. Zhao et
al. [58] designed an improved alternating optimization strategy
to solve the Ly minimization which incorporates both vertex po-
sitions and face normals. Wang et al. [57] proposed a method to
decouple noise and features by weighted L,-analysis compressed
sensing, and they prove that the pseudo-inverse matrix of the
Laplacian of a mesh is a coherent dictionary for sparsely rep-
resenting sharp feature signals on the shape. Recently, Lu et al.
[8] detected features by introducing a novel L; minimization. Lu
and his colleagues [59] proposed a low-rank matrix approxima-
tion approach for geometry filtering and demonstrated various
geometry processing applications. More recently, the low-rank
optimization was further extended to mesh denoising [60, 61].

3. Half-Kkernel Laplacian Operator

To better understand the proposed half-kernel Laplacian op-
erator (HLO), we briefly introduce the uniform Laplacian on
meshes and the Laplacian diffusion flow in the first place. We
then analyze the differential property of feature points and finally
explain how we construct the HLO.

3.1. Uniform Laplacian

Given a surface mesh M = (V, E, F) with N vertices, we have
the set of vertices V, the set of edges E and the set of faces F. The
i-th vertex v; € V is represented by the coordinates v; = (x;, y;, z;)-
The differential coordinates (i.e., d-coordinates) of vertex v; are

defined as :
Gi=vim o Y ()
NVl WeENV(v;)

where ¢; = (6,,0,,0;), NV(v;) is the set of the neighboring ver-
tices of the vertex v;, and [NV (v;)] is the degree (number of neigh-
bors) of v;. It is also called the uniform Laplacian due to the
equal weights. The direction of the differential coordinates ap-
proximates the local normal direction and the magnitude linearly
approximates the local mean curvature H(v;) of v; [4].

3.2. Laplacian Diffusion Flow

Fairing a mesh can be viewed as a filtering process on mesh
signal. In the discretized setting, it is usually done by solving a
heat-diffusion-like partial differential equation as follows.

oV(x,1)

Y = AAV(x, 1), 2)

where A is the diffusion speed. The Laplacian operator is defined
as
AV = V2V, A3)

where V2V = V-V is the divergence of the gradient on the vertices
of a given mesh. The above equation (Eq. (2)) is usually solved
in an iterative way

Vil = v AdVP VY 4)

where dt is the time step length.

The surface smoothing based on the uniform Laplacian often
causes the issues of shrinkage and smoothing out features (Fig-
ure 2a). Motivated by these issues, we attempt to first analyze the
differential property of feature points, which will be described in
Sec. 3.3.

3.3. Differential Analysis of Feature Points

Intuitively speaking, feature points can be classified as the
points with abrupt normals (i.e., with large dihedral angles)
[14, 7]. Denote by f a surface manifold and a a feature point
at a sharp edge on the cube model (Figure 1(a)). We simply an-
alyze the situation when f crosses the sharp edge (Figure 1(a)).
It is obvious that f’(a + eu) # f'(a + €v), where f’ means the
first-order derivative of f and € > 0. Thus, f is not differentiable
at the feature point a, which means that the second-order deriva-
tive f”’(a) does not exist either. This reveals that it does not make
sense to apply the uniform Laplacian (i.e., second-order deriva-
tive) operator to a feature vertex with all its neighbors (i.e., full
window, see Figure 1(a)). Figure 2(a) shows the feature-wiping
and shrinking results with the uniform Laplacian operator in a
full-window sense.

Ideally, the approximations for locations (a + €v) and (a + €u)
should come from the upper region and the front region, respec-
tively. The approximation for a should base on its two neigh-
boring vertices on the edge since it is differentiable along the
edge [57]. Corner, the intersection of several edges, is theoreti-
cally non-differentiable and usually fixed in mesh denoising [57].
Sharp edge points and corners are difficult to approximate be-
cause they are identified with some means which makes surface



smoothing less robust due to sensitivity to the noise level. To
overcome this difficulty, we attempt to approximate each (fea-
ture or non-feature) vertex with a half-kernel Laplacian opera-
tor which targets at computing the Laplacians using half-window
neighbors. It will be discussed in Section 3.4.

3.4. The Half-kernel Laplacian Operator

=
Y
a + €y
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(b) Uniform Laplacian

(a) Feature point (c) Half-window Laplacian

Figure 1: (a) Analysis of a feature point a on an edge. The locations (a + €v) and
(a + eu) should be approximated in the half windows which have the same colors
with them, rather than the local full windows centered at them. The illustration
of the uniform Laplacian operator (b) and the proposed HLO (c). The blue vec-
tor 77 represents the local normal of vertex v;, and the red vector d indicates the
orientations of the full-window and half-window Laplacians.
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Figure 2: Comparing the uniform Laplacian operator and the half-kernel Lapla-
cian operator (HLO) on the noisy Vase. One can clearly see the shrinkage arti-
fact of the uniform Laplacian. In contrast, HLO is geometry-aware and feature-
preserving.

The above observation and analysis indicate that the uniform
Laplacian operator should be performed only on half windows
(i.e., subsets of neighbors) of the feature point instead of its
whole neighborhood. This key insight encourages us to intro-
duce a half-kernel Laplacian operator (HLO) for surface meshes.

Our operator is to approximate the Laplacians at vertices with
half windows. To produce half windows, each of the immediate
neighboring vertex of the current vertex is paired with another
neighboring vertex to partition the local neighborhood into two
half windows (left and right). The other neighbor paired by the
starting neighbor is determined as the neighboring vertex which
has the shortest distance to the plane defined by the current ver-
tex, the starting neighbor and the centroid of the neighborhood.
Refer to Figure 4(a). Consider a vertex vy with a neighbor vp.
Denote by v4 the starting neighbor to be paired. v;, is the cen-
troid of the neighborhood of vy. Figure 1(b) also shows a half

ALGORITHM 1: Half Windows Generation
Input: vertex v;

Output: all subsets V,;,
’ 1

i = VeI Zenvon Vi

for each v € NV(v;) do

compute the distance of other neighbors (except v;) to the
plane (or line in a degenerated case) defined by v;, v and v

select the neighbor with the shortest distance, and pair it with
Vi

partition NV(v;) with the line v;, v; into the left and right
subsets (i.e., two half windows)

end
enumerate all subsets V,;,

ALGORITHM 2: Half-kernel Laplacian Operator

Input: vertex v;
Output: 6—final half-kernel Laplacian for v;
Einis = 10
compute Vy,;, via Algorithm 1
compute the centroid v; with NV (v;)
compute the local normal: n; = normalize(v; — v})
for each subset vy, € Vg do
di = ij vaevsub(vi — Vi)
0; = (d; - np)n,
if E(6;) < E;,;; then
Einit = E(ét)
(5 = (5,‘
end
end

window of a feature vertex. As a result, each vertex v; and its
neighborhood has |[NV(v;)| partition choices which further gen-
erate 2|NV(v;)| paired subsets (half windows). The half-window
generation algorithm is shown in Algorithm 1.

Remark 1. Theoretically, the full window neighbors can be
split into more than two half windows. We simply select the
choice of two half windows, because corners are typically far
fewer than the edge features in a shape, and recognizing cor-
ners may introduce new parameters and result in less robustness.
Also, this half-window scheme is sufficient for non-feature ver-
tices.

Remark 2. In general, there might exist multiple candidates
with the same shortest distances when determining the other
neighbor. We randomly select one candidate in this case, which
we found no noticeable differences in mesh denoising. Note that
the plane defined by the current vertex, the starting neighbor and
the centroid of the neighborhood may degenerate into a line. We
simply determine the other neighbor using the distance to the line
instead.

We apply the uniform Laplacian operator independently to
each of these subsets and compute the half-window Laplacians
for each vertex v;. Because half-kernel Laplacians introduce a
shift in tangential direction, directly using the half-kernel Lapal-
cians may result in inferior results like degenerating and flipping
(Figure 3). We thus project them onto their corresponding full-
kernel Laplacians (i.e., using full neighbors) to remove the tan-
gential component and obtain the final half-kernel Laplacians.
This way ensures small Laplacian magnitudes for feature ver-
tices and large Laplacian magnitudes for non-feature vertices,
thus smoothing non-features and preserving features. Figure 4(b-
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Figure 3: With and without projection. (a) Noisy bunny. (b) 1 iteration of vertex
update of the half-window Laplacian without projecting onto the uniform Lapla-
cian. (c) 1 iteration of vertex update with the half-kernel Laplacian projecting
onto the uniform Laplacian. The flipped triangles are rendered in red. (d) A
flipped triangle. The clock-wise or counter-clock wise order of vertices have
been changed after noise contamination.

¢) shows two such examples. We define the projection in Eq. (5).
6=(d-nn, )]

where d indicates the half-kernel Laplacian and # is the orienta-
tion of the full-kernel Laplacian.

We can easily enumerate all the intermediate half-kernel
Laplacians for v;: ..., 8.(vk), 0g(Vi), . . ., where 61 (vg) and dg(vk)
respectively denote the half-kernel Laplacians for the left sub-
set and right subset with the starting neighbor v, (vy € NV(v;)).
We next need to determine the optimal Laplacian among the
2|NV(v;)| half-kernel Laplacians. The optimal one will be se-
lected based on the regularization energy which may vary in dif-
ferent applications. In this work, we define the regularization en-
ergy of each vertex as the sum of the norm of the Laplacian and
the the distance to the original vertex position, shown as below.

E(S) = 151+ [Iv: VIl ©)

where 6f can be any among the calculated 2|NV(v;)| half-kernel
Laplacians in the #-th iteration. v} is the position of vertex v;
in the t-th iteration and v? is the initial position of v;. The for-
mer term, which naturally uses the computed 6! and is a feature-
preserving term, represents the movement between two consecu-
tive iterations, and the latter term, a typical data term, describes
the distance between the position at the #-th iteration and the ini-
tial position of vertex v;. This energy enables a closest walking
from the initial positions and positions in the previous iteration,
thereby preserving features and the original shape. We compute
the energy E for each half-kernel Laplacian of vertex v; and select
the optimal Laplacian that incurs the smallest energy. Algorithm
2 summarizes the proposed half-kernel Laplacian operator. To
smooth surfaces, the final half-kernel Laplacians in the #-th iter-
ation are used to update vertex positions in the (¢ + 1)-th iteration
via Eq. (4). Adt in Eq. (4) and the number of iterations work
in a proportional way to each other. In other words, increasing
Adt would generally induce a decrease of the number of update
iterations, and vice versa. A larger Adt would also possibly cause
instability. To make our method more robust, we empirically set
Adt to 1, which works very well in all our experiments. Figure
2(b) shows an example for our HLO.

4. Experimental Results

We first describe the parameter setting, and then compare the
proposed HLO with the uniform Laplacian operator (ULO). Fi-
nally, We compare our method with the state-of-the-art denoising

Figure 4: The half-kernel Laplacian operator on a vertex vo. (a) v4, the start-
ing neighbor of vy, is paired with the other neighbor vp which has the shortest

distance to the plane vov v('). v(’) is the centroid of the neighbors. The line v4vp

partitions the neighborhood into the left and right half windows (subsets). (b) and
(c): dy and d; are computed by performing the uniform Laplacian operator to the
half windows. 61 and ¢ are achieved by projecting d; and d> to the full-window
uniform Laplacians, respectively.

methods on both synthetic and scanned data, visually and quan-
titatively.

4.1. Parameter Setting

The compared state-of-the-art techniques are: the bilateral
mesh filter (BMF) [36], the unilateral normal filter (UNF) [45],
the bilateral normal filter (BNF) [37], the L, minimization
method (Lg) [7], the guided normal filter (GNF) [43], the cas-
caded normal regression (CNR) [49], and the non-local low-rank
normal filtering method (NLLR) [60]. The source code of these
methods are available or the authors provide test results. We
summarize the parameters of these methods in Table 1. Table
2 shows the parameter values of all methods on most models.
Interested readers are referred to the papers for more specific
details.

Table 1: Parameters of the state-of-the-art mesh smoothing methods.

Method Number of Parameters
Parameters
BMF 1 kier: number of iterations.
T threshold for controlling the averaging weights.
UNF 3 njer: number of iterations for normal update.

Virer: NUmMber of iterations for vertex update.
Virer: Number of iterations for vertex update.
o : variance parameter for the spatial kernel.
nirer: NUMber of iterations for normal update.
A: weight for the LO term in the target function..
@, Bo: initial values for @ and 8

U, p: update ratios for @ and .

|Bmax: maximum value of 3.

Virer: number of iterations for vertex update.
o2 variance parameter for the range kernel.
nirer: NUMber of iterations for normal update.
o - the noise variance.

Ni: number of similar vertices.

Virer: NUmMber of iterations for vertex update.
kirer: number of iterations.

BNF(Local) 3

LO 6

GNF 3

NLLR 3

Ours 1

4.2. Comparison with the Uniform Laplacian

Figure 2 shows results processed by the uniform Laplacian and
our HLO, respectively. We listed the corresponding results after
1,3, 5, and 15 iterations. It is obvious that our HLO significantly
alleviates the shrinking effect. The feature places (e.g., upper and
lower parts) of the vase are preserved by HLO.

Figure 5 visualizes the one-to-one vertex errors of both the uni-
form Laplacian and our HLO on the Julius model. Our method
better preserves surface features and produces more accurate
smoothing results than the uniform Laplacian operator. The aver-
age vertex errors and mean curvature energy [62, 4, 63] of Figure



5 are displayed in Figure 6. The HLO induces much lower av-
erage vertex errors than the uniform Laplacian operator, which
means it preserves the shape better. The first iteration sees a re-
markable decrease on the mean curvature energy, and the two
methods have a similar decreasing trend in mean curvature led
by diffusion flow.

We also compared with the cotangent Laplacian. Figure 7
shows the results of the uniform Laplacian, cotangent Laplacian
and our HLO. The cotangent Laplacian is more geometry aware
than the uniform Laplacian. However, the cotangent Laplacian
tends to generate sharp “thorns” on the surface (please zoom in

to observe).
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Figure 5:  The visualization of one-to-one vertex errors on the Julius model.
(a) Noisy shape (o7, = 0.21,). (b) 10 iterations of the uniform Laplacian opera-
tor (ULO). (¢) 10 iterations of HLO. The errors are visualized using color maps,
where the warm (resp. cold ) colors denote positive (resp. negative) displace-
ments.

4.3. Visual Results

Synthetic models. We compare our method with the selected
state-of-the-art methods on various models corrupted with syn-
thetic noise. Following state-of-the-art mesh smoothing tech-
niques, we generate synthetic models by adding zero-mean
Gaussian noise with standard deviation o, to the corresponding
ground truth. o, is proportional to the mean edge length /, of the
input mesh.

The uniform Laplacian operator can unfold the flipped trian-
gles during surface smoothing. Thanks to this property, our ap-
proach is less sensitive to high-level noise than most of the com-
pared methods, as shown in Figure 8 and 9 (Bunny: o, = 0.5/,,
Nicolo: o, = 0.51,, Vaselion: o, = 0.81, ). The flipped triangles
are rendered in red. See the close-up views.

Figure 8 shows visual results over the Armadillo model con-
taminated by Gaussian noise with o, = 0.5¢;. We can see from
the blown-up windows that the state-of-the-art methods tend to
oversmooth or oversharpen the fine details, or retain excessive
noise in the model. We can observe from the mouth and eyes
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Figure 6: The average vertex errors (Avg. Vert. Err.) and total mean curvature

energy (Mean Cur. Ene.) of Figure 5 with increasing iterations.

- w w
L { L [ \A
7 7 7
P \
(a) Noisy (b) UNI (c) COT (d) HLO

Figure 7: The comparison of smoothing results after 10 iterations on (a) a noisy
bunny model (o, = 0.81,). (b) The uniform Laplacian operator. (c) The cotangent
Laplacian operator. (d) The half-kernel Laplacian operator (HLO).

that our method well preserves the small-scale features which
are usually lost to some extent in the results by the other methods.
Figure 9 (Bunny:o,, = 0.5/, and Nicolo:o,, = 0.5/,) demonstrates
that our approach preserves better surface details. Some meth-
ods may oversharpen the ear in Figure 9 (Bunny:o,, = 0.5/,) and
nose in Figure 9 (Nicolo:o,, = 0.5/,). In Figure 9 (Vaselion:o, =
0.81,), there are many curved features which are particularly dif-
ficult to recover by most existing methods when removing high-
level noise. The method [7] can robustly remove the noise while
it results in oversharpening in certain areas and loses some fine
details. By contrast, our method outputs better results, in terms of
features and details preservation. In Figure 10, our method well
recovers the sphere shape which has fewer folded triangles than
other methods. Notice that CNR [49] may produce better results
if the model is trained on surface meshes with large noise.

Undoubtedly, our method can also well handle small or
medium noise. Figure 9 (Nicolo:o,, = 0.2/, and Vaselion:o, =
0.21,) shows two such examples. We can observe from Figure
9 (Nicolo:o, = 0.2[,) that our method and NLLR [60] gener-
ates similar results which are the best among all results. NLLR
[60] uses non-local information for mesh smoothing while our
method uses local information only. Figure 9 (Vaselion:o, =
0.2/,) demonstrates that the result by our HLO is better than the
results by other techniques, in terms of noise removal and fea-
tures preservation.

Raw scanned models. In addition to the synthetic models, we
also tested the proposed HLO on scanned models corrupted with
raw noise. Figure 11 show the smoothing results of all methods
on three real scanned surface meshes. Our method produces very
competitive results, in terms of preserving features. Taking the
second row as example, our HLO and NLLR [60] produce the
best results while other methods may oversharpen or oversmooth
certain regions. Note that NLLR [60] uses non-local information
while ours utilizes local information only.

There are several reasons for why our method outperforms or
is comparable to state-of-the-art techniques. (1) Our method
is position based which largely mitigates the issue of flipped
triangles. By contrast, most normal-based approaches (e.g.,
[45, 37, 60]) cannot effectively overcome this issue, without us-
ing any pre-processing strategy like [14, 8]. [7] is also position
based; however it may over-sharpen some regions unexpectedly,
due to the edge-based operator on the whole shape. CNR [49]
is a normal regression method that relies on immediate position
update in each iteration; that is, it cannot directly predict the fi-
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Figure 8: Amadillo with Gaussian noise o, = 0.5/,. The flipped triangles are rendered in red.

nal normals. It thus easily smooths out features without a good
mapping. (2) Multiple steps and parameters make those methods
more complicated to search the solution space, thus leading to
less automation and less robustness in handling different levels
of noise, especially heavy noise. On the contrary, our method
involves a single parameter, and is more simpler, automatic and
robust in dealing with various noise.

4.4. Quantitative Evaluations

Besides the above visual comparisons, we also compare the
state-of-the-art techniques with our approach from a quantita-
tive perspective. Specifically, we employ E, and MSAE (mean
square angular error) to respectively evaluate the positional er-
ror and normal error, as suggested by previous works [45, 37, 8].
These two metrics are calculated between the smoothing results
and their corresponding ground truth. According to [45], E,, is
the L? vetex-based mesh-to-mesh error metric, and MSAE mea-
sures the mean square angular error between the face normals of
the denoised mesh and those of the ground truth.

1
E, = [—— E E Ajdist(x;,T)?, (N
' \/3 Lier Ak I j '

€Fy()

where Ay is the area of face k, and dist(x;,T) is the L? dis-
tance between the updated vertex x;. and a triangle of the refer-
ence mesh T which is closest to x;.

2
ZkeF Hk
F

MSAE = @)

where 6 is the angle between the k-th face normal of the de-
noised model and its corresponding normal in the ground-truth
model, and Ny is the number of faces in the 3D shape.

Table 2 summarizes the statistical numbers of E, and MSAE
over most models for all the compared methods. As with pre-
vious works [45, 8], we also found that the visual comparison
results might not necessarily agree with the E,. This is because
our method smooths surfaces via unfolding the flipped triangles
in the noisy input, which is similar to the behavior of [7]. As a
consequence, vertices may walk far from their ground-truth loca-
tions. Regarding MSAE, the Ly minimization [7] and our method
are usually the best two among all techniques. We also list the
runtime of our method in Table 3. Note that our code has not
been optimized or speeded up via parallelization.

5. Conclusion

In this work, we have introduced a novel method for feature-
preserving surface smoothing. Motivated by the shrinking and
feature-wiping issues of the uniform Laplacian operator, we an-
alyzed the differential property at feature points. We developed a
Half-kernel Laplacian Operator (HLO) which can preserve sur-
face features and resist shrinkage. Various experiments show that
our approach is better or comparable to state-of-the-art surface
smoothing techniques, in terms of visual quality and quantitative
evaluations. Our method is robust to high noise and it has a sin-
gle parameter (the number of vertex update iterations) which is
easy and intuitive to tune.

Our method still suffers from a few limitations. First, it has dif-
ficulty to recover smooth sharp edges for CAD-like models with
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Figure 9: Models corrupted with Gaussian noise: Bunny o, = 0.5/,, Nicolo o, = 0.2/, and o, = 0.5/, Vaselion ¢, = 0.2/, and o, = 0.8/,. The flipped triangles are
rendered in red.
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Figure 10: Sphere with heavy Gaussian noise (o7, = 0.7/,). The flipped triangles are rendered in red. See the close-up views for details.
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Figure 11: Results of models scanned by Microsoft Kinect.
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Figure 12: Results of scanned models: Angel and Rabbit.
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Figure 13:  (a) The vase model with noise (o, = 1.5/,). (b) The smoothing
result of LO [7]. (c) The smoothing result of our HLO after 10 iterations.

Table 2: Quantitative comparisons with the representative mesh smoothing meth-

ods.

Models Methods l(\fjgg ) (E>; 10-3) Parameters

BMF 47.54 3.34 (30)
Amadillo BNF 53.58 3.11 (10,0.35,10)
(00 = 0.51,) CNR 34.28 3.39 (synthetic, 10)
(F;gure .8){ GNF 44.90 3.10 (10,0.35,10)
VI 43243 UNF 49.20 3.07 (0.5, 10, 10)
|F|: 86482 Lo 9.59 3.52 (De fault)

’ NLLR 32.18 3.03 (De fault)

OURS 9.33 3.57 (5)

BMF 5.07 4.99 (30)
iHbunny BNF 3.57 4.39 (10,0.35,20)
(00 = 0.51,) CNR 29.7 3.96 (synthetic, 10)
(Fi’:gure 9 ri)w 1 GNF 3.39 425 (10,0.35,20)
V]: 34834 UNF 3.87 4.38 (0.4,20, 10)
IF|: 69451 Lo 4.32 4.70 (De faulr)

’ NLLR 25.24 3.58 (De fault)

OURS 6.25 4.32 (5)

BMF 16.20 0.96 (30)

Nicolo BNF 8.97 0.92 (10,0.35,20)
(o =021 CNR 8.56 0.96 (synthetic, 3)
(Fingure 9 reow 2) GNF 9.42 0.94 (10,0.35,20)
IV]: 14846 UNF 9.77 0.93 (0.5,20, 10)
|F|: 20437 Lo 4.44 0.93 (De fault)

: - NLLR 7.13 0.93 (Default)

OURS 3.35 0.89 3)

BMF 56.33 1.13 (50)

Nicolo BNF 65.33 1.00 (10,0.45,20)
(0 = 0.51,) CNR 41.35 1.22 (synthetic, 10)
(F;gure 9 ;ow 3) GNF 58.15 0.93 (10,0.45,20)
VI 14846 UNF 61.66 0.94 (0.45,20, 10)
|F|: 20437 Lo 5.67 1.02 (Default)

’ NLLR 38.44 0.92 (De fault)

OURS 10.33 1.08 (5)

BMF 38.33 34.47 (30)

Vaselion BNF 33.76 14.20 (10,0.35,10)
(00 = 0.21,) CNR 45.25 14.49 (synthetic, 1)
(Fi’:gure 9 ri)w 4 GNF 44.75 14.40 (10,0.35, 10)
IV]: 38728 UNF 39.07 13.84 (0.5, 10, 10)
F|: 77452 Lo 35.84 15.30 (De fault)

’ NLLR 35.00 12.51 (De fault)

OURS 14.49 14.80 (3)

BMF 167.9 30.06 (50)
Vaselion BNF 171.9 12.58 (10,0.45,30)
(0 = 0.81,) CNR 126.0 14.82 (synthetic, 10)
(Fi”gure 9 r(ow s) GNF 166.6 13.98 (10,0.45,30)
IV]: 38728 UNF 158.7 13.26 (0.5,20, 10)
|F|: 77452 Lo 14.72 16.49 (De fault)

: NLLR 82.25 11.29 (Default)

OURS 32.35 15.87 (10)

BMF 10.03 5.00 (30)

Boy BNF 9.67 4.89 (10,0.35,20)
(Kinect fusion) CNR 9.70 4.95 (kinect fusion, 10)
. ) GNF 8.50 5.06 (10,0.35,20)
(Figure 11 row 1)
VI 76866 UNF 9.42 4.90 (O.S,VIO, 10)
IFI: 152198 Lo 11.21 4.90 (De fault)
’ NLLR 9.61 491 (De fault)

OURS 8.06 4.86 (10)

BMF 10.74 1.60 (30)

David BNF 10.70 1.572 (10,0.45,20)
(kinect fusion) CNR 15.85 2.09 (kinect fusion, 5)
(Figure 11 row 2) GNF 9.14 1.65 (10,0.45,20)
IV]: 51789 UNF 10.28 1.566 (0.45, 10, 10)
|F|: 101937 Lo 12.59 1.60 (De fault)

’ NLLR 10.39 1.58 (De fault)

OURS 9.32 2.12 (10)

BMF 6.70 3.68 (30)
Pyramid BNF 6.98 3.45 (10,0.45,20)

Jramc CNR 541 345 (kinect fusion, 3)
(kinect fusion) | GNE 5.40 3.8 (10,045, 20)
(Figure 11 row 3) . - S
VI: 35261 UNF 7.43 343 (0.6,20,10)
|F|: 69611 Lo 5.59 3.29 (v2,0.1,0.1)

) NLLR 6.79 3.29 (De faulr)

OURS 6.62 3.58 5)

Table 3: Runtime for our method (in seconds).

Amadillo iHbunny Nicolo Vaselion Sphere
Models (Figure 8) (Figure 9 (Figure 9 (Figure 9 (Figure 10)
row 1) row 2) row 5)
Time 82.7 64.2 14.8 37.4 42.1




a small number of vertices (Figure 13). This is because HLO is
not an edge-based operator [7]. For real scanned CAD-like mod-
els with large number of vertices, our method can produce results
with comparable quality to the state-of-the-art methods (Figure
11 row 3). As with previous works [37, 8], we also fixed the open
boundaries of the input noisy mesh, which might sometimes lead
to undesired results.

As the future work, we would like to incorporate new schemes
to overcome the issue of recovering smooth sharp edges. We
would also like to improve the performance via parallelization.
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