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A B S T R A C T

We present an optimization method for process sequencing in automated assembly of three-dimensional
physical structures comprised of uniform elements using robotic equipment. This is part of a process of
large-scale construction based on a pick-and-place (PnP) assembly approach. We show that PnP process
sequencing is a kind of assignment problem that can be solved by the Hungarian method. There exists a
theoretical lower bound of the required work, while a feasible motion sequence may exceed the lower
bound due to physical constraints. Subject to those particular constraints, we compare several process
sequencing strategies against various data sets. Evaluated under a cost and a processing-time metrics, one
of the strategies outperforms the rest. The approach adopted in the strategy may be generalized in different
application-dependent scenarios, such as from crane operations to large scale 3D printing.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

In the same way buildings may be constructed from bricks or pre-
fabricated components, a structure can be assembled from equal-
sized parts by a process called pick-and-place (PnP). Initially, PnP
refers to placement of electronic components onto circuit boards [1].
The term is broadly used in areas including architecture, industrial
automation, and robotics, to refer to such processes as case packing,
palletizing, machine tending, and assembly. PnP is also applied to
assemble 3D structures from parts layer by layer [2,3]. The resulting
artifacts are of particular interest to architects and engineers who
need physical prototypes at different stages and scales of design
for visual and functional evaluation. The parts are often low cost,
reusable, and easy to store, which supports a sustainable approach to
many iterations of physical evaluation. This approach is also impor-
tant in the field of 3D construction, advanced pre-fabrication and
assembly.

The topic of this paper pertains to construction of 3D raster-
ized structures based on equal-sized parts or commonly known
as voxels, volume elements equivalent of picture elements: pixels.
It has been shown that rasterized structures can be built by
automated machines, which have already played important roles in
the advanced manufacturing industry; however, in the construction
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industry automation is primitive due to an economical reason [4,5]:
it is often more costly to use machines, e.g. robots, than men. Never-
theless, there are numerous case studies in automated construction,
such as bricklaying and modular houses assembly [4,6]. Bricklaying
robots can pick up bricks from prepared pallets, apply mortar,
and place them to correct locations [7–9]. Modular-house-assembly
robots can construct residential houses from 2D or 3D pre-fabricated
modules [4,10-12], which shows the features of voxels as mentioned
above. Recently, a new trend is to use swarm agents such as drones
for automated transportation. In some studies [13–16], unmanned
aerial vehicles (UAVs) carried bricks from palettes to designated
positions to build structures based on predetermined sequences.
In another study [17], a swarm of robots assembled structures by
mimicking the behaviour of social animals such as termites. In 2012,
Amazon built a system in which goods placed on portable storage
units were moved around by swarm robots [18]. In long term, the
unmanned approach may be a solution to reducing construction cost
in regions where manpower becomes increasingly expensive.

To achieve automation in construction, it is valuable to inves-
tigate whether there exists an optimal construction sequence that
minimizes the work, and if exists, how to find it. We frame the
problem as a transformation from one rasterized structure (source)
to another (destination). Our objective is to find an efficient sequence
that a machine can follow to achieve the transformation, where
efficiency is described by an application-dependent cost function.
The framework encompasses the situation of constructing a struc-
ture from material palette; in this case, the source is the shape of the
palette and the destination is the desired structure.
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Specifically, we study PnP process sequencing strategies for a
Cartesian robot with at least three axes to transform a set of equally-
sized parts from one configuration to another. Our application is
relevant to additive manufacturing processes based on stacking but it
has broader applications to building construction, rapid prototyping
and industrial engineering. There are certain assumptions of the
capabilities and limitations of the operating machine such as: (1)
It can reach a 3D work envelope without penetrating a structure
so there are no collisions between the parts and the machine; (2)
The parts are held from their top surface using a gripper such as
a pneumatic vacuum suction system; and (3) The parts are spaced
apart within tolerance so interface friction characteristics are not
regarded during final placement. These assumptions facilitate the
presentation of the key idea of this paper by decoupling the pro-
posed principle from hardware specifications. While they do limit
the type of machines that the principle is directly applicable to,
they do not prevent amendment of algorithms dealing with more
complex robotic motion. For example, collision between parts and
machine is simply avoided by using a clearance plane in this study
but the proposed theoretical framework can accommodate collision
detection by incorporating more sophisticated geometric computa-
tion.

2. Related work

The problem of reconfiguring a finite set of uniform elements into
another may be seen as an assignment problem. It is a combinatorial
optimization problem having factorial complexity to the number of
elements [19]. In addition, computing a solution requires considera-
tion of constraints that originate in physical motion limitations such
as the machine’s reach, the geometric shape of the elements, and
potential collisions among the machine and elements.

While humans rely on intuition to assemble structures from parts,
this process can be augmented through intelligent devices [20,21],
simple assembly of parts may be achieved by a set of actuators
without human intervention [22]. Construction done by multiple
robots in parallel raises challenges in efficient motion sequenc-
ing [23,24]. Algorithms exist to minimize the workload imbalance
between the robots and to maximize assembly parallelization [25].

A wall assembly system was developed by Bock et al. [7]. The
construction sequence was predetermined offline; a robot could
identify the current state with a recognition module, and determine
the next move of the assembly sequence. Inspired by the building
activities of termites, Werfel et al. [23] presented a ground mobile
robot system to perform automated construction. The system could

rely on local information and implicit coordination to align robots
to a structure, and climb over obstacles. These studies are typical
rasterized structure construction using PnP.

PnP process sequencing has another related area in robotics:
modular self-reconfigurable robots (MSR) [26–28]. A MSR system
often consists of many equal-sized modular robots, which can be
reconfigured into different shapes of a robot to achieve various
functions. Each module may have actuators, sensors, processors and
ways to communicate with its neighbours so that shape transforma-
tion is realized autonomously.

During transformation, the motion of each module is gener-
ated with certain strategy. Pamecha et al. [29] and Chiang and
Chirikjian [30] defined a few basic transformation of the modules.
Reconfiguration of a MSR system was based on recursively calculat-
ing intermediate configurations between a start and a destination
configuration, until the transition between consecutive configura-
tions was immediately achievable by the basic moves. The Hun-
garian method, a combinatorial optimization algorithm that solves
the assignment problem in polynomial time [31], was applied to
obtain optimally matched module pairs between two configurations.
For each pair, the average coordinates of the modules determined
the location of an intermediate module. This approach is applica-
ble to modules of various shapes, such as 2D hexagon [29] and 2D
lattice [30].

Similarity among the above work lies in that all methods are
subject to certain physical constraints, feasible motion sequence of
a particular task is not unique, and a cost function is evaluated to
obtain an optimized sequence. In this paper, the proposed approach
for shape transformation is structured along the same line; how-
ever, our investigation focuses on structures comprised of a greater
number of parts than a typical MSR. In this scenario, computa-
tional cost becomes an important factor for the evaluation of process
sequencing algorithms. We describe several algorithms and compare
their performance based on various experiments.

3. Principle

The proposed PnP process sequencing has three processing
stages: (1) Rasterization, (2) Model Alignment, and (3) Motion
Sequencing, as illustrated in Fig. 1. The method accepts a closed tri-
angular mesh as input, which is rasterized into voxels. Rasterization
of a triangle mesh is a well studied topic with many algorithms avail-
able in the open literature [32,33]. We rasterize well-oriented mesh
surfaces into voxels followed by a flood-fill operation that assigns
interior voxels.

(a) Mesh Model (b) Rasterization (c) Alignment (d) Motion Sequencing

source

destination

Fig. 1. Processing stages. (a) Input mesh models. (b) Rasterized models. (c) Model alignment. (d) Motion sequence to transform the source to destination.
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3.1. Model alignment

Model alignment aims to maximize the overlapping volume of
two structures and in that respect minimize required actions for
reconfiguration. It is not a trivial problem in computational geom-
etry. Many studies have been conducted in 2D [34–36]. There are
also some work in 3D [37–39] and they deal with shapes in poly-
hedral representation. Complexity and computational overhead of
these methods are considerable. We are dealing with the ras-
terized representation, and if we assume that the structures are
already aligned in the vertical direction on input and that only rigid-
body translation without rotation is allowed during alignment, the
problem becomes computationally affordable by exhaustive search
in the horizontal plane.

After two rasterized structures are aligned, we can classify voxels
in three categories (e.g. Fig. 2).

Mover (M): voxels present only in the source set,
Void (V): voxels present only in the destination set,

Overlapped: voxels present in both sets.

As their names suggest, to transform the source to destination M
must be moved to V voxels and the overlapped voxels shall remain
in place.

If a transformation involves an unequal number of M and V, we
will put extra M voxels to palette or move additionally required V
voxels from palette. The shape of the palette is defined as a linear
stack without loss of generality.

3.2. Cost function

Based on the Cartesian coordinate system shown in Fig. 3, we
define the cost of moving an M to a V voxel as

cij = |xj − xi| + |yj − yi| + 2zmax − zi − zj (1)

where (xi, yi, zi) and (xj, yj, zj) denote the coordinates of Mi and Vj

respectively, and zmax is the clearance or rapid motion plane. The
cost function models a three-axis Cartesian robotic machine: the
movement in the x and y directions is executed sequentially and
is only allowed at zmax to avoid collision with the structures. As
depicted in Fig. 3, the cost function consists of four distances: dzi,
moving Mi to zmax; dx and dy, moving Mi in the zmax plane so that its x
and y coordinates coincide with those of Vj; dzj, moving Mi from zmax

to Vj. The measurement unit is the size of a rasterized voxel.

3.3. Mapping M to V

To generate a motion sequence we are concerned with which
M voxels are moved to which V voxels. There exist many ways of
mapping M to V while we are interested in the one that produces
the lowest total cost of movement. Assuming that there are nM to be
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Fig. 2. Model alignment. (a) Unaligned structures. Structure 1 has voxels 1 to 8. Struc-
ture 2 has voxels 1′ to 8′ . (b) Aligned structures. M voxels in green, V voxels in yellow,
and the overlapped voxels in gray.

x

y

z dx
dzj

dy
zmax

Vj

Mi

gripper

dzizj

zi

Fig. 3. Cost of PnP. A typical move of Mi to Vj consists of four distances: dx , dy , dzi and
dzj .

moved to the same number of V, we can calculate the costs of moving
each M to all V by Eq. (1). The costs can be expressed in a cost matrix

Cn×n =

M1

M2
...

Mn

V1 V2 · · · Vn⎛
⎜⎜⎜⎜⎝

c11 c12 · · · c1n

c21 c22 · · · c2n
...

...
. . .

...
cn1 cn2 · · · cnn

⎞
⎟⎟⎟⎟⎠

(2)

where the i-th row contains the costs of moving Mi to all V, and the
j-th column contains the costs of moving all M to Vj. The cost matrix
completely captures every possible mapping from an arbitrary M to
an arbitrary V. Next, we find the minimal total cost such that each M
is mapped onto a distinctive V.

In principle, finding the best mapping between M and V is an
assignment problem [19]. A brute-force search for the minimal cost
requires comparison of n! sequences, while the Hungarian method
is a much more efficient search algorithm with time complexity
O(n3) [31,40]. We applied a standard numerical procedure of the
Hungarian method feeding the cost matrix as the input. The output
is n pairs of M and V with the total cost of moving each M to the
corresponding V guaranteed to be minimum.

3.4. Physical constraint

Despite that the lowest-cost M – V pairs can be generated by
the Hungarian method, they do not necessarily lead to feasible
sequences, where feasibility is determined by physical constraints
of a PnP process. In this study, our PnP machine uses a pneumatic
vacuum suction gripper; so it is subject to a top-access constraint,
meaning PnP is only applicable to voxels at the top surface of a
structure.

We use shape transformation in Fig. 2 (b) to show examples of a
feasible and an invalid sequence. The M: {1, 4, 5, 8} are to be moved
to V: {5′, 6′, 7′, 8′}; hence, the cost matrix is

C4×4 =

1
4
5
8

5′ 6′ 7′ 8′⎛
⎜⎜⎝

7 8 6 7
8 7 7 6
9 8 8 7
7 6 6 5

⎞
⎟⎟⎠ (3)
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1 4

5, 5’

8

2, 1’3, 2’

6, 3’7, 4’

(a)

1, 7’

4

8

(b)

2, 1’3, 2’

6, 3’7, 4’

5, 5’

4

8, 6’

(c)

2, 1’3, 2’

6, 3’7, 4’

1, 7’

5, 5’

4, 8’

(d)

8, 6’

2, 1’3, 2’

6, 3’7, 4’

5, 5’

1, 7’

Fig. 4. A feasible sequence of shape transformation in Fig. 2 (b). (a) 5 → 5′ , (b) 1 → 7′ ,
(c) 8 → 6′ , (d) 4 → 8′ . The top surface is indicated in red.

The Hungarian method produces the following lowest-cost pairs:
1 → 7′, 4 → 8′, 5 → 5′, 8 → 6′, with a total cost 6 + 6 + 9 + 6 = 27.
A feasible sequence is 5 → 5′, 1 → 7′, 8 → 6′, 4 → 8′, as illustrated in
Fig. 4. A voxel at the top surface of the structures is picked and placed
at each step.

An alternative lowest-cost solution of the Hungarian method is
5 → 5′, 1 → 7′, 8 → 8′, 4 → 6′. (The total cost is also 27.) After two
steps, it is impossible to move 8 to 8′ and 4 to 6′ because of a deadlock
under the top-access constraint shown in Fig. 5.

3.5. Strategies

Four strategies: Global Optimization, Local Optimization, Greedy
Selection, and Random Selection strategies, are proposed in generat-
ing motion sequences.

3.5.1. Global Optimization Strategy (GOS)
The cost matrix contains all M and V, and the resultant M – V pairs

from the Hungarian method are guaranteed to produce the minimum
total cost; however, the M – V pairs may not be feasible for PnP under
the top-access constraint. Hence, GOS is used as a lower bound of the
total cost, not as a method for generating valid motion sequences.

3.5.2. Local Optimization Strategy (LOS)
LOS aims at producing motion sequences that are valid against

the top-access constraint apriori without computation of collisions
by simulation. It thus constructs a cost matrix of M and V directly

4

8

6’

8’

2, 1’3, 2’

6, 3’7, 4’

1, 7’

5, 5’

Fig. 5. Invalid sequence: 8 → 8′ and 4 → 6′ , due to deadlock.

accessible on the respective structures and applies the same Hungar-
ian method to find the lowest-cost M – V pairs, which is a subset of all
M and V; therefore, it is not global but local optimization. After these
M are moved to the corresponding V, the top voxel surface M and V
of each structure are updated. Then, a new cost matrix is calculated
based on the new set of M and V. The process is repeated until all M
are moved to V.

For example, in Fig. 2 (b) at the start of transformation, the top-
surface M and V are {1,5, 8} and {5′,6′} respectively. (V {7′,8′} are on
the top surface at the final stage, not the initial stage.) The cost matrix
is

C3×2 =
1
5
8

5′ 6′⎛
⎝ 7 8

9 8
7 6

⎞
⎠ (4)

The number of M is larger than that of V; the Hungarian method is
able to discard an M associated with high costs such that the total
cost of paired M and V is minimum. The M – V pairs found are 1 → 5′
and 8 → 6′ while M{5} dose not participate in transformation at this
stage. PnP may be applied to these pairs in any order [Fig. 6 (a)]. Next,
the top-surface M and V become {4,5} and {7′,8′} respectively and the
new cost matrix is

C2×2 =
4
5

7′ 8′(
7 6
8 7

)
(5)

The M – V pairs are 4 → 7′ and 5 → 8′ [Fig. 6 (b)], or 4 → 8′ and
5 → 7′. The total cost of LOS is 7 + 6 + 7 + 7 = 27, which happens
to be the lower bound produced by GOS (Section 3.4).

3.5.3. Greedy Selection Strategy (GSS)
GSS aims at producing valid motion sequences without using the

Hungarian method. The cost matrix is constructed in exactly the
same way as LOS. The lowest-cost M – V pair in the matrix is selected
by simply searching for the first instance of the lowest cost value ele-
ment. The M is moved to the paired V, and their corresponding row
and column are removed from the matrix. This completes one step
of transformation.

If new M and V appear on the top surface as a consequence the
above transformation, the cost matrix is updated by adding a row
for an M and a column for a V. Then, the same process is applied:
searching for the lowest-cost M – V pair in the matrix, moving the
M to V, and removing their corresponding row and column, etc. The
process is repeated until all M are moved to V. The strategy is named
greedy move because at each step only the lowest-cost M – V pair is
moved, not all those on the top surface.

Based on the example of Fig. 2 (b), GSS produces motion
sequence: 8 → 6′, 4 → 8′, 1 → 5′, 5 → 7′, shown in Fig. 7. The total
cost is 6 + 6 + 7 + 8 = 27.

1, 5’

4 5

8, 6’

(a)

2, 1’3, 2’

6, 3’7, 4’

(b)

4, 7’5, 8’

1, 5’8, 6’

2, 1’3, 2’

6, 3’7, 4’

Fig. 6. Motion sequence generated by LOS. (a) First stage. (b) Second stage.
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1 4 5

8, 6’

(a)

2, 1’3, 2’

6, 3’7, 4’

1

4, 8’

5

8, 6’

(b)

2, 1’3, 2’

6, 3’7, 4’

1, 5’

4, 8’

5

8, 6’

(c)

2, 1’3, 2’

6, 3’7, 4’

1, 5’

4, 8’5, 7’

8, 6’

(d)

2, 1’3, 2’

6, 3’7, 4’

Fig. 7. Motion sequence generated by GSS. (a) 8 → 6′ . (b) 4 → 8′ . (c) 1 → 5′ . (d)
5 → 7′ .

3.5.4. Random Selection Strategy (RSS)
RSS is similar to GSS except that at each step a random, as

opposed to a lowest-cost, M – V pair is selected for PnP. Thus pro-
cessing time for searching the top-voxel surface for the best element
is eliminated. RSS simulates a relatively random PnP process and its
total cost may be considered as an average of all different feasible
motion sequences.

4. Results and discussions

The process sequencing strategies were tested on several com-
puter models shown in Fig. 8. The models were first rasterized into
structures of similar sizes, regardless of their original dimensions.
Due to the rasterization method implemented, we could not control
accurately the number of voxels in a rasterized model; hence, shape
transformation required moving material from and to a linear stack.
Table 1 shows the total cost and computational time of the strategies
in application to transforming the models to each other. The total
cost is a representation of the workload when shape transformation
is realized in a physical PnP system. The computational time is the
CPU processing time for generating a motion sequence from a C++
program running on a Windows 64-bit PC, Intel(R) Core(TM) i3-2310
M CPU 2.10 GHz, RAM 8 GB.

For each transformation shown in Table 1, it is the number of
M – V pairs, not the number of voxels in the structures, that suggests
the amount of work needed because prior to PnP, the structures have
been aligned and overlapped voxels do not require movement. This
can be seen in the transformation from the pyramid (left column)
to wall (top row), and from the pyramid to igloo (top row). The first
transformation involved 1643 M – V pairs while the second one only
involved 325 M – V pairs. The pyramid and igloo are more similar in
shape, thereby better aligned, which is the reason for the reduction
in the cost and time.

Overall, in terms of the cost metric, GOS is the best strategy of the
four as it guarantees to produce the lower bound of the total cost;
however, the M – V pairs generated by GOS do not suggest a motion
sequence by default. Sometimes, they do not lead to a feasible motion
sequence at all (Section 3.4). The second best strategy is LOS, which
generates groups of M – V pairs in several steps of processing. The
groups naturally determine a sequence. For M – V pairs within each
group, they can be moved in any sequence as they are all on the top
surface of the respective structures. GSS is the third best strategy,
slightly worse than LOS but clearly better than RSS.

Fig. 8. Test models: (a) wall, (b) pyramid, (c) starfish, (d) cube, (e) igloo, (f) castle, (g)
stairs, and (h) Eiger mountain.

In terms of the time metric, RSS is the fastest strategy since
little calculation is needed. All it does is to update the top-surface
M – V pairs of two structures, and pick a random pair. GSS and LOS are
similar in the speed of processing. GSS has to update the top-surface
M – V pairs after every PnP action; therefore, albeit light-weight pro-
cessing at each step, the accumulated processing time may not be
shorter than that of LOS. LOS applies the Hungarian method mul-
tiple times; at each time a group of M – V pairs, not one pair, are
completed with PnP; hence, the number of iterations of calculation
is much fewer than that of GSS, and the cost matrix is not huge. In
contrast, GOS only applies the Hungarian method once to all M and
V with a huge cost matrix, which makes it the most time-consuming
strategy.

We also studied the performance of the strategies with respect to
different resolutions of rasterization. Fig. 9 shows the results based
on a particular transformation: from the starfish to the castle model,
while other transformations exhibit similar patterns. As can be seen,
the total cost increases about linearly with the increment in the num-
ber of M – V pairs. Same applies to the time with exception of GOS,
whose time complexity is O(n3). The results of GOS at high resolu-
tions are not included in Fig. 9 (b) to avoid drastic downscaling of the
time axis. Most importantly, the overall trend shows that increasing
resolution will not induce cubic increase in the time of LOS, whereas
one might thought so intuitively for it is based on the Hungarian
method with time complexity O(n3).

Based on the comparisons, LOS stands out as it can achieve an
appealing balance between the cost and processing time. We show
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Table 1
Comparison of the total cost and computational time (second) of the four strategies based on transformation of the test models. Models on the left column are the source and
those on the top row are the destination of transformation. The number below a model indicates the number of voxels of the rasterized structure.

From To Wall Pyramid Starfish Cube Igloo Castle Stairs Eiger
2435 2455 2550 2250 2346 2441 2437 2466

Wall 2435 M–V pairs 1643 2248 1625 1677 2153 1876 1581

Cost GOS 60,021 89,191 54,855 58,875 91,192 71,779 46,845
LOS 60,199 89,263 55,789 59,479 91,192 71,917 48,038
GSS 61,201 89,377 56,585 60,509 92,536 74,059 47,883
RSS 62,413 98,707 58,653 62,419 93,630 74,931 51,523

Time GOS 4440 9431 3744 4058 10718 4621 1684
LOS 9.5 21.1 9.9 9.5 14.9 11.2 3.6
GSS 15.1 23.4 15.1 15.4 19.9 18.9 14.2
RSS 5.8 8.9 6.0 6.0 9.2 7.0 2.2

Pyramid 2455 M–V pairs 1643 1492 1191 325 1748 1272 1072

Cost GOS 60,021 55,470 39,384 8911 62,229 39,336 30,259
LOS 60,761 55,514 39,384 8977 62,241 39,472 30,679
GSS 62,009 55,840 39,470 9433 62,791 40,016 30,323
RSS 62,413 56,664 39,756 9809 64,971 43,168 31,079

Time GOS 1093 1829 1147 6.1 4097 1333 164
LOS 9.1 22.3 8.9 2.6 14.7 7.3 2.3
GSS 15 14.6 10.5 2.5 16.4 11.4 9.4
RSS 6.4 6.0 4.8 1.7 7.0 5.2 1.5

Starfish 2550 M–V pairs 2248 1492 2169 1552 2016 1895 1846

Cost GOS 89,191 55,470 73,674 51,677 75,891 88,120 71,114
LOS 89,351 55,510 73,682 51,677 76,065 88,134 71,628
GSS 89,649 55,888 74,074 51,939 77,929 88,502 71,376
RSS 98,691 56,596 75,826 52,735 88,209 90,546 72,074

Time GOS 2677 2757 10,690 3108 5137 5436 3349
LOS 15.8 22.5 30.2 30.3 19.2 13.9 8.1
GSS 23.7 14.7 23.7 15.4 21.8 19.6 20.1
RSS 9.0 5.7 8.9 6.0 8.1 7.7 2.7

Cube 2250 M–V pairs 1625 1191 2169 973 1590 1141 902

Cost GOS 54,855 39,384 73,674 26,625 59,400 34,446 22,184
LOS 56,011 39,384 73,728 26,625 59,724 34,678 22,794
GSS 56,627 39,460 73,862 26,667 59,594 35,508 22,414
RSS 58,607 39,792 75,942 27,017 61,196 39,372 26,158

Time GOS 1519 758 6248 551 3304 596 92.3
LOS 9.6 9.0 26.0 6.0 9.0 6.5 1.8
GSS 14.7 10.4 23.3 8.1 14.4 9.7 7.6
RSS 6.5 4.9 9.4 4.1 6.6 4.8 1.3

Igloo 2346 M–V pairs 1677 325 1552 973 1703 1141 964

Cost GOS 58,875 8979 51,677 26,625 62,783 34,432 24,789
LOS 60,211 9047 51,683 26,625 62,861 34,754 24,967
GSS 60,949 9411 51,887 26,649 63,215 34,848 25,093
RSS 62,367 9809 52,867 27,025 66,747 39,526 26,457

Time GOS 1319 7.2 2341 382 3714 732 81.6
LOS 9.9 2.6 30.4 6.2 13.9 6.8 1.9
GSS 15.1 2.4 15.3 8.0 15.8 10.0 8.1
RSS 7.0 1.8 6.7 4.0 7.7 5.1 1.3

Castle 2441 M–V pairs 2153 1748 2016 1590 1703 1358 1839

Cost GOS 91,192 62,229 75,891 59,400 62,783 45,249 74,994
LOS 91,192 62,267 76,255 59,762 62,855 45,679 74,780
GSS 92,546 62,585 77,831 59,592 63,007 46,229 75,050
RSS 93,630 64,971 88,217 61,232 66,711 47,431 75,638

Time GOS 3502 4832 4376 1478 3737 808 1004
LOS 13.6 17.2 20.8 9.4 15.6 8.3 4.6
GSS 19.6 16.6 21.2 14.4 16.3 11.9 18.9
RSS 9.6 8.1 9.6 7.5 8.1 6.6 2.5

(continued on next page)
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Table 1 (continued)

From To Wall Pyramid Starfish Cube Igloo Castle Stairs Eiger
2435 2455 2550 2250 2346 2441 2437 2466

Stairs 2437 M–V pairs 1876 1272 1895 1141 1141 1358 1384

Cost GOS 71,779 39,336 88,120 34,446 34,432 45,249 47,449
LOS 71,823 39,578 88,328 34,664 34,722 45,527 47,511
GSS 75,887 39,698 88,198 35,640 34,624 45,897 48,289
RSS 74,931 43,168 90,554 39,320 39,426 47,431 50,487

Time GOS 1513 1209 3699 603 591 1121 377
LOS 12.2 8.5 14.9 7.5 7.1 8.9 3.5
GSS 17.6 11.1 19.4 9.6 9.9 13.5 11.8
RSS 8.8 6.3 9.5 5.6 5.7 7.0 1.8

Eiger 2466 M–V pairs 1443 1072 1846 902 964 1839 1384

Cost GOS 50,734 30,259 71,114 22,184 24,789 74,994 47,449
LOS 51,584 30,291 71,126 22,652 24,987 74,780 47,497
GSS 51,996 30,355 71,180 22,326 24,983 75,020 48,213
RSS 52,606 31,079 72,114 26,268 26,649 75,638 50,487

Time GOS 2795 215 1145 115 144 3605 716
LOS 9.2 2.8 8.6 2.1 2.3 5.6 4.0
GSS 14.5 9.3 20.3 7.6 8.6 17.8 12.0
RSS 6.0 1.5 2.8 1.4 1.4 2.6 1.8

in Fig. 10 a sequence of transformation obtained by LOS in the order
of wall, pyramid, starfish, cube, igloo, castle, stairs, and Eiger. The
resolution of rasterization is set to show clearly each model and is
much higher than that used in the previous experiments. Note that
in several transformations material were moved from and to a linear
stack to compensate for unequal number of M and V.
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Fig. 9. Total cost in terms of the size of a voxel (a) and computational time (b) of the
strategies based on transformation from the starfish to the castle model at different
resolutions of rasterization. The number of M–V pairs indicates the resolution: more
M–V pairs, higher resolution.

In our study, the principle and experiments suggest that an
optimal motion sequence can only be generated in considera-
tion of physical constraints; however, the top-surface constraint
actually prevents the construction of overhanging structures. For
example, a room with ceiling or a wall with windows cannot be
constructed by the current method. To address these limitations, dif-
ferent physical cubes must be used, such as those that can be stuck
underneath another cube. The new scenario would require different
cost functions and physical constraints. We believe that the pro-
posed approach in LOS is still generally feasible: first selecting voxels
satisfying the constraints, then optimizing M – V pairs. This would
lead to new methods that can produce low-cost solutions and are
computationally light weight.

5. Conclusion and future work

Based on a particular PnP model, we have proposed several strate-
gies to achieve shape transformation of rasterized 3D structures.
Implementation and testing of the strategies are achieved through
computer simulation. The global strategy GOS produces the lower
bound of the total cost but does not guarantee a feasible motion
sequence. Comparison of different strategies shows that the local
strategy LOS outperforms the others that are able to generate feasible
PnP sequences. The main contribution of this work is in treating the
PnP process as an assignment problem, in applying the Hungarian
method to obtain an optimized motion sequence, and in framing a
local optimization strategy so that the resulting motion sequence is
subject to physical constraints.

The proposed method is applicable to the most common kind of
construction, where all building blocks are from the material stock,
i.e. no overlapping between the source and destination structures.
More importantly, the method is suitable for new kind of construc-
tion based on reusable building blocks. For instance, the ability to
transform the shape of a physical representation on-site is greatly
needed in rapid prototyping. Potential application of the method
can also be found in areas such as collective construction, automatic
assembly, and reconfigurable robots. In a large-scale problem involv-
ing the movement of thousands of parts, minimizing the workload
and obtaining a motion sequence in a short time are both important.
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Wall: 13349 vox. Transform to pyramid 2000 vox. moved 5000 vox. moved 8000 vox. moved

2000 vox. moved

4000 vox. moved

Transform to cubeStarfish: 13383 vox.4000 vox. moved

3000 vox. moved

5197 vox. moved

5000 vox. moved6715 vox. movedCube: 12393 vox.Transform to igloo

8669 vox. movedTransform to starfish Pyramid: 12906 vox.2000 vox. moved

800 vox. moved

1500 vox. moved 2000 vox. moved 2855 vox. moved Igloo: 12269 vox. Transform to castle

1000 vox. moved3000 vox. moved5000 vox. moved6755 vox. movedCastle: 13461 vox.

Transform to stairs 1500 vox. moved 3000 vox. moved 6042 vox. moved

Stairs: 12481 vox.6000 vox. moved8027 vox. moved 2000 vox. moved niatnuomotmrofsnarTdevom.xov0004

4500 vox. moved

Fig. 10. A sequence of transformation obtained by LOS. M voxels subject to PnP at the current stage are indicated in red. Other M voxels are indicated in green. Voxels of the
destination are indicated in gray.

The local optimization strategy is the basis for creating new methods
under different application-dependent physical constraints.

Our future work will focus on algorithms to transform structures
made of several types of parts, e.g. Lego. We are also interested in
algorithms based on parts with different properties, such as color
and texture. This would enable transformation of structures with
varying surface features. Modeling a realistic robotic machine is

another topic to investigate. A more flexible robotic machine may
save the trouble to move all the way to the clearance plane. Per-
haps, the topology of a structure can indicate which part should
be moved first. Algorithms that combine topological information
with machine capabilities may lead to optimization strategies that
could solve the problem of accessibility and motion sequence in one
framework.
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